翻訳と辞書
Words near each other
・ Rice Krispies Treats
・ Rice Lake
・ Rice Lake (Barron County, Wisconsin)
・ Rice Lake (CDP), Minnesota
・ Rice Lake (Cook County, Minnesota)
・ Rice Lake (ghost town), Minnesota
・ Rice Lake (Hubbard County, Minnesota)
・ Rice Lake (Mille Lacs County, Minnesota)
・ Rice Lake (Ontario)
・ Rice Lake (Pope County, Minnesota)
・ Rice Lake (Rice County, Minnesota)
・ Rice Lake (town), Wisconsin
・ Ricci Institutes
・ Ricci Luyties
・ Ricci scalars (Newman–Penrose formalism)
Ricci soliton
・ Ricci v. DeStefano
・ Ricci-flat manifold
・ Riccia
・ Riccia atlantica
・ Riccia fluitans
・ Riccia, Molise
・ Ricciaceae
・ Ricciarda Cybo-Malaspina
・ Ricciarda, Marchioness of Saluzzo
・ Ricciardo Amadino
・ Ricciardo e Zoraide
・ Ricciarelli
・ Ricciarelli (disambiguation)
・ Riccioli (crater)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Ricci soliton : ウィキペディア英語版
Ricci soliton
In differential geometry, a Ricci soliton is a special type of Riemannian metric. Such metrics evolve under Ricci flow only by symmetries of the flow, and they can be viewed as generalizations of Einstein metrics. The concept is named after Gregorio Ricci-Curbastro.
Ricci flow solutions are invariant under diffeomorphisms and scaling, so one is led to consider solutions that evolve exactly in these ways. A metric g_0 on a smooth manifold M is a Ricci soliton if there exists a function \sigma(t) and a family of diffeomorphisms \ \subset \operatorname(M) such that
: g(t) = \sigma(t) \, \eta(t)^
* g_0
is a solution of Ricci flow. In this expression, \eta(t)^
*g_0 refers to the pullback off the metric g_0 by the diffeomorphism \eta(t).
Equivalently, a metric g_0 is a Ricci soliton if and only if
: \operatorname(g_0) = \lambda \, g_0 + \mathcal_X g_0,
where \operatorname is the Ricci curvature tensor, \lambda \in \mathbb, X is a vector field on M, and \mathcal represents the Lie derivative. This condition is a generalization of the Einstein condition for metrics:
: \operatorname(g_0) = \lambda \, g_0.
==References==

*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Ricci soliton」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.